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NOTES 

Ni2’ Adsorption Centers on the MgO Lattice 

It has been shown in many cases that 
ions on the surface of a solid are, similarly 
to ions in a homogeneous phase, responsible 
for catalytic activity (1). Examination of 
the change in coordination undergone by 
these ions on adsorption on oxide cata- 
lysts for example, and elucidation of the 
structure of the respective active centers 
provide a possibility for a more detailed 
understanding of the mechanism of catal- 
ysis. The EPR technic is especially suitable 
for this purpose (2). 

The bivalent nickel ion participating in 
various complexes exhibits a so-called 
“anomalous” magnetic moment when sub- 
jected to a change in its coordination num- 
ber (3). This property has been made use 
of in the present investigation for identify- 
ing the Ni*+ adsorption centers on the sur- 
face of MgO cubic crystal. 

The MgO sample examined containing 
Ni”+ ions in its cubic crystal lattice was 
prepared by impregnation of analytical 
grade MgO in a nickel nitrate ammonia 
complex and heating it subsequently in 1 
atm of air at 500°C and before the experi- 
ment in vucuo at 800°C. The sample prc- 
pared in this manner contained 1.570 (by 
weight) of nickel. 

The influence of adsorbed H,O, HBr, and 
NH, on the spectra of Ni*+ placed on the 
crystal lattice of MgO was examined with 
the aid of JES-3BS EPR spectrometer. 

The sample treated at 800” gives a reso- 
nance absorption line characteristic for the 
Ni*+ ion in octahedral surrounding (4) with 
a g value of 2.24 and a line width of 280 
gauss at 25'. Investigation of such NiO/ 
MgO diluted systems (5, 6’) showed that 
the Ni*+ ions are not isolated but grouped 

in clusters and that there are even micro- 
crystals of NiO ; and dipole-dipole inter- 
action between paramagnetic neighbors 
occurs. The line narrowing observed after 
heating at 800” has been interpreted to in- 
dicate that exchange interaction begins also 
to take place (5). 

After evacuation to a pressure of lo-@ mm 
Hg, adsorption of water vapor did not 
affect the g value and practically so the 
line width, but increased the integral in- 
tensity, as evidenced by repeated graphical 
integration and the use of a standard. This 
increase is reversible and the effect can be 
observed by repeating the adsorption- 
desorption cycles. The increase of the inte- 
gral intensity was strongly temperature 
dependent. Adsorption of HBr and NH, 
led to a much smaller increase in the inte- 
gral intensity than water vapor (Table 1). 

TABLE 1 
INCREASE OF THE INTEGRAL INTENSITY OF THE 

EPR SIGNAL OF Ni*+ IONS DURING THE 
ADSORPTION OF H20, HBr, AND NHa” 

Partial 
pressure 

of the Temp at Increase 
adsorbed registration of integral 

Adsorbed compound of spectra intensity 
compound (mm Hg) (“C) (%) 

Hz0 20 25 13 
20 -100 17 
20 -170 23 

HBr 1 25 6 
NH3 40 25 4 

(1 The adsorption of all substances was carried out 
at 25°C. 
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Oxygen adsorption at 350 mm Hg had the 
same effect as water vapor. 

The observed increase of the integral in- 
tensity is related to the change in the co- 
ordination number of the Ni2+ ions on the 
surface during adsorption and can be easily 
explained from Balhausen and Liehr’s view 
on the “anomalous” magnetic moment of 
nickel complexes (7). 

Prior to adsorption the Ni2+ ion on the 
crystal face (001) is situated in a crystal 
field with approximately flat square pyramid 
symmetry (C,,) . This adsorbed water mole- 
cule occupies the site of the sixth ligand 
and restores the octahedral coordination 
(Oh). This change in coordination affects 
the spin multiplicity of the Ni”+ ions. As 
shown in Fig. la an ion in a field of Oh 
symmetry possesses two unpaired electrons 
belonging to the e, doublet. The change to 
C,, symmetry (desorption of the HZ0 
ligand from the surface) and a sufficiently 
high value for A yields in the extreme case 
t’he diamagnetic complex because of the 
singlet state IA,,, $I = (c$) (dtJ. 

The observed dependence of the integral 
intensity on the temperature (Table 1) can 

be easily explained with Balhausen and 
Liehr’s formula for the magnetic suscep- 
tibility : 

Xa = G [l + Q expAEIkT]-1 + N, (1) 

where g is Land&% factor for the state 
3&, ; N, Avogadro number; k, the Boltz- 
man constant; N,, the temperature inde- 
pendent part of the susceptibility; AE, the 
difference in energy between the singlet 
‘Al, and triplet ‘B,, I& = (cl:,) (cl.,-,s) 
states. At low temperature the singlet state 
population increases and so the difference 
between magnetic susceptibility before and 
after adsorption increases. 

As already mentioned, there is no con- 
siderable line width change during adsorp- 
tion. The reason for no noticeable influence 
of field distortion on the line width change 
during adsorption can be explained by 
dipole-dipole int’eraction obscuring the line 
narrowing. As can be estimated no more 
than 25% of all nickel ions are on the sur- 
face and half of them are in singlet state 
at room temperature giving no resonance 
absorption at all. Most of the ions in the 
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FIG. 1. Diagramatic representation of the d-orbitals in fields of different symmetries: (a) octahedral (Oh) ; 

(b) flat square piramidal (Cd*); (c) octahedral, distorted wit,h one weaker ligand; (d) octahedral, distorted 
with one stronger ligand. 
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FIG. 2. Ni*+ adsorption center on the (110) face: (a) relaxation form; (b) ideal (lloj face; (c) after adsorp- 
tion of two ligands. 

bulk of the crystal are not subject to any expected, which has also been observed 
symmetry change. experimentally. 

The Ni2+ on the crystal face (110) pro- The study of the changes of EPR spectra 
vides another type of adsorption center of Ni2+ ions in a MgO crystal lattice caused 
(Fig. 2). The relaxation form of the surface by the adsorption of H,O, HBr, and NH, 
center is Ni2+ in tetrahedral coordination. molecules indicate the existence of Ni2+ 
The nickel ion adopts octahedral coordina- adsorption centers with a definite coordina- 
tion on adsorption of two molecules of tion on the surface. 
water. The energy diagram for the tetra- 
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